danuri
오늘의 기록
danuri
전체 방문자
오늘
어제
  • 오늘의 기록 (307)
    • java (150)
      • java (33)
      • spring (63)
      • jpa (36)
      • querydsl (7)
      • intelliJ (9)
    • kotlin (8)
    • python (24)
      • python (10)
      • data analysis (13)
      • crawling (1)
    • ddd (2)
    • chatgpt (2)
    • algorithm (33)
      • theory (9)
      • problems (23)
    • http (8)
    • git (8)
    • database (5)
    • aws (12)
    • devops (10)
      • docker (6)
      • cicd (4)
    • book (44)
      • clean code (9)
      • 도메인 주도 개발 시작하기 (10)
      • 자바 최적화 (11)
      • 마이크로서비스 패턴 (0)
      • 스프링으로 시작하는 리액티브 프로그래밍 (14)
    • tistory (1)

블로그 메뉴

  • 홈
  • 태그
  • 방명록

인기 글

태그

  • docker
  • CICD
  • Security
  • Kotlin
  • reactive
  • PostgreSQL
  • 자바 최적화
  • connection
  • 마이크로서비스패턴
  • Thymeleaf
  • ChatGPT
  • JPA
  • 트랜잭션
  • AWS
  • DDD
  • Database
  • POSTGIS
  • mockito
  • Saving Plans
  • S3
  • Spring
  • 등가속도 운동
  • Bitmask
  • Jackson
  • 도메인 주도 설계
  • gitlab
  • RDS
  • nuribank
  • SWAGGER
  • Java

최근 댓글

최근 글

hELLO · Designed By 정상우.
danuri

오늘의 기록

프로그래머스 - 블록 이동하기
algorithm/problems

프로그래머스 - 블록 이동하기

2021. 1. 19. 01:43

programmers.co.kr/learn/courses/30/lessons/60063

 

코딩테스트 연습 - 블록 이동하기

[[0, 0, 0, 1, 1],[0, 0, 0, 1, 0],[0, 1, 0, 1, 1],[1, 1, 0, 0, 1],[0, 0, 0, 0, 0]] 7

programmers.co.kr

문제 설명

로봇개발자 무지는 한 달 앞으로 다가온 카카오배 로봇경진대회에 출품할 로봇을 준비하고 있습니다. 준비 중인 로봇은 2 x 1 크기의 로봇으로 무지는 0과 1로 이루어진 N x N 크기의 지도에서 2 x 1 크기인 로봇을 움직여 (N, N) 위치까지 이동 할 수 있도록 프로그래밍을 하려고 합니다. 로봇이 이동하는 지도는 가장 왼쪽, 상단의 좌표를 (1, 1)로 하며 지도 내에 표시된 숫자 0은 빈칸을 1은 벽을 나타냅니다. 로봇은 벽이 있는 칸 또는 지도 밖으로는 이동할 수 없습니다. 로봇은 처음에 아래 그림과 같이 좌표 (1, 1) 위치에서 가로방향으로 놓여있는 상태로 시작하며, 앞뒤 구분없이 움직일 수 있습니다.

로봇이 움직일 때는 현재 놓여있는 상태를 유지하면서 이동합니다. 예를 들어, 위 그림에서 오른쪽으로 한 칸 이동한다면 (1, 2), (1, 3) 두 칸을 차지하게 되며, 아래로 이동한다면 (2, 1), (2, 2) 두 칸을 차지하게 됩니다. 로봇이 차지하는 두 칸 중 어느 한 칸이라도 (N, N) 위치에 도착하면 됩니다.

로봇은 다음과 같이 조건에 따라 회전이 가능합니다.

위 그림과 같이 로봇은 90도씩 회전할 수 있습니다. 단, 로봇이 차지하는 두 칸 중, 어느 칸이든 축이 될 수 있지만, 회전하는 방향(축이 되는 칸으로부터 대각선 방향에 있는 칸)에는 벽이 없어야 합니다. 로봇이 한 칸 이동하거나 90도 회전하는 데는 걸리는 시간은 정확히 1초 입니다.

0과 1로 이루어진 지도인 board가 주어질 때, 로봇이 (N, N) 위치까지 이동하는데 필요한 최소 시간을 return 하도록 solution 함수를 완성해주세요.

제한사항

  • board의 한 변의 길이는 5 이상 100 이하입니다.
  • board의 원소는 0 또는 1입니다.
  • 로봇이 처음에 놓여 있는 칸 (1, 1), (1, 2)는 항상 0으로 주어집니다.
  • 로봇이 항상 목적지에 도착할 수 있는 경우만 입력으로 주어집니다.

입출력 예

boardresult

[[0, 0, 0, 1, 1],[0, 0, 0, 1, 0],[0, 1, 0, 1, 1],[1, 1, 0, 0, 1],[0, 0, 0, 0, 0]] 7

입출력 예에 대한 설명

문제에 주어진 예시와 같습니다.
로봇이 오른쪽으로 한 칸 이동 후, (1, 3) 칸을 축으로 반시계 방향으로 90도 회전합니다. 다시, 아래쪽으로 3칸 이동하면 로봇은 (4, 3), (5, 3) 두 칸을 차지하게 됩니다. 이제 (5, 3)을 축으로 시계 방향으로 90도 회전 후, 오른쪽으로 한 칸 이동하면 (N, N)에 도착합니다. 따라서 목적지에 도달하기까지 최소 7초가 걸립니다.

 

풀이

전형적인 bfs문제다. 그러나 로봇의 길이가 2이고, 회전도 고려해야한다. 기본적인 아이디어는 다음과 같다.

  • 범위의 확장 : 매 탐색마다 범위를 체크하는 것도 괜찮지만, 범위를 확장시켜 사방을 벽으로 둘러싸 벽인지 아닌지만 고려하게끔 할 수 있다.
  • 집합 사용 : 방문 여부를 확인하기 위해서 집합을 사용한다. 집합은 순서가 없기 때문에 두 점으로 이루어진 로봇의 방문 체크를 편리하게 할 수 있다.
  • 회전 : 회전하는 방향의 모든 칸에 벽이 없어야 회전 가능하다는 것을 고려한다.
from collections import deque

def get_next_pos(pos, board):
    next_pos = [] # 반환 결과 (이동 가능한 위치들)
    pos = list(pos) # 현재 위치 정보를 리스트로 변환 (집합 → 리스트)
    pos1_x, pos1_y, pos2_x, pos2_y = pos[0][0], pos[0][1], pos[1][0], pos[1][1]
    # (상, 하, 좌, 우)로 이동하는 경우에 대해서 처리
    dx = [-1, 1, 0, 0]
    dy = [0, 0, -1, 1]
    for i in range(4):
        pos1_next_x, pos1_next_y, pos2_next_x, pos2_next_y = pos1_x + dx[i], pos1_y + dy[i], pos2_x + dx[i], pos2_y + dy[i]
        # 이동하고자 하는 두 칸이 모두 비어 있다면
        if board[pos1_next_x][pos1_next_y] == 0 and board[pos2_next_x][pos2_next_y] == 0:
            next_pos.append({(pos1_next_x, pos1_next_y), (pos2_next_x, pos2_next_y)})
    # 현재 로봇이 가로로 놓여 있는 경우
    if pos1_x == pos2_x:
        for i in [-1, 1]: # 위쪽으로 회전하거나, 아래쪽으로 회전
            if board[pos1_x + i][pos1_y] == 0 and board[pos2_x + i][pos2_y] == 0: # 위쪽 혹은 아래쪽 두 칸이 모두 비어 있다면
                next_pos.append({(pos1_x, pos1_y), (pos1_x + i, pos1_y)})
                next_pos.append({(pos2_x, pos2_y), (pos2_x + i, pos2_y)})
    # 현재 로봇이 세로로 놓여 있는 경우
    elif pos1_y == pos2_y:
        for i in [-1, 1]: # 왼쪽으로 회전하거나, 오른쪽으로 회전
            if board[pos1_x][pos1_y + i] == 0 and board[pos2_x][pos2_y + i] == 0: # 왼쪽 혹은 오른쪽 두 칸이 모두 비어 있다면
                next_pos.append({(pos1_x, pos1_y), (pos1_x, pos1_y + i)})
                next_pos.append({(pos2_x, pos2_y), (pos2_x, pos2_y + i)})
    # 현재 위치에서 이동할 수 있는 위치를 반환
    return next_pos

def solution(board):
    # 맵의 외곽에 벽을 두는 형태로 맵 변형
    n = len(board)
    new_board = [[1] * (n + 2) for _ in range(n + 2)]
    for i in range(n):
        for j in range(n):
            new_board[i + 1][j + 1] = board[i][j]
    # 너비 우선 탐색(BFS) 수행
    q = deque()
    visited = []
    pos = {(1, 1), (1, 2)} # 시작 위치 설정
    q.append((pos, 0)) # 큐에 삽입한 뒤에
    visited.append(pos) # 방문 처리
    # 큐가 빌 때까지 반복
    while q:
        pos, cost = q.popleft()
        # (n, n) 위치에 로봇이 도달했다면, 최단 거리이므로 반환
        if (n, n) in pos:
            return cost
        # 현재 위치에서 이동할 수 있는 위치 확인
        for next_pos in get_next_pos(pos, new_board):
            # 아직 방문하지 않은 위치라면 큐에 삽입하고 방문 처리
            if next_pos not in visited:
                q.append((next_pos, cost + 1))
                visited.append(next_pos)
    return 0

'algorithm > problems' 카테고리의 다른 글

백준 1715 - 카드 정렬하기  (0) 2021.01.21
백준 18310 - 안테나  (0) 2021.01.21
백준 16234 - 인구 이동  (0) 2021.01.15
백준 14888 - 연산자 끼워 넣기  (0) 2021.01.15
백준 18405 - 경쟁적 전염  (0) 2021.01.14
    'algorithm/problems' 카테고리의 다른 글
    • 백준 1715 - 카드 정렬하기
    • 백준 18310 - 안테나
    • 백준 16234 - 인구 이동
    • 백준 14888 - 연산자 끼워 넣기
    danuri
    danuri
    IT 관련 정보(컴퓨터 지식, 개발)를 꾸준히 기록하는 블로그입니다.

    티스토리툴바